

INTERNATIONAL DEVELOPMENT PLANNING REVIEW

ISSN:1474-6743 | E-ISSN:1478-3401

DESIGN AND IMPLEMENTATION OF A SECURE VIRTUAL ATM SYSTEM WITH PIN AND INTEGRATED ONLINE UPI SUPPORT

Akkala Abhilasha

Department of Computer Science and Engineering, Geethanjali College of Engineering and Technology

Avinash Seekoli

Department of Computer Science and Engineering, ST. Martins engineering college students of CSE, St. Martin's Engineering College, Secunderabad-500100

1.ABSTRACT

In real-time, users often depend on physical ATMs for banking, but these machines are restricted to basic transactions like withdrawals and transfers. Physical ATMs require debit or credit cards to operate, making them card-dependent. Authentication is done through PIN entry, with limited online security measures. These ATMs have risks such as card loss, skimming, and physical tampering. Additionally, they have high costs related to maintenance and card production. There are also delays in peer-to-peer and interbank transfers. The availability of physical ATMs is restricted to specific locations and traditional banking hours. The Virtual ATM is a platform built in Python that enables users to securely carry out banking transactions online. This system incorporates PIN authentication and OTP verification to improve security measures. It allows users to access and execute transactions anytime and from any location. The system is designed with function parameters and return values to maintain efficient operations. By eliminating the need for real cards and lowering the security risks of card theft, UPI integration allows users to conduct instantaneous peer-to-peer transactions, increasing the effectiveness of digital payments. The study highlights the improvements in transaction security, user convenience, and accessibility while examining the system's architecture, implementation challenges, security features, and performance evaluation.

Key words: Banking transactions, PIN-basedauthentication, OTP verification, Virtual ATM, Peerto-peer transactions, Transaction security.

2.INTRODUCTION

Guido van Rossum created the Python language in the 1980s following the success of the ABC Programming Language. There are several real-time applications for this high-level programming language. Python 3.0 is easy to use, compatible, has a straightforward syntax, and is bug-fixable. 2008 saw its introduction. various people were attracted in adopting this programming language because of its various capabilities, which led to its rise in popularity.

This paper, named "Design and Implementation of a Secure Virtual ATM System with PIN and Integrated Online UPI Support," is a Virtual ATM system which has PIN and Integrated online

UPI support. It is completely online based system. This system is built using Python programming language. By using this system, the sending of money instantly using UPI become easy. This system has features like log in in with a PIN, getting OTPs for extra safety. One of the main advantage is that the user can do all this anytime, from anywhere there no need to go to an ATM or use a physical card.

Regular ATMs depend on machines and bank cards, and they're only available in certain places at certain times. They also come with problems like card theft, fraud, and high costs for setup and maintenance. On top of that, they can be slow when sending money between people or banks. Our virtual ATM system solves all of this by offering a secure, online solution that uses PINs and OTPs to keep things safe.

The aim of the project is developing cost-effective, convenient, and a secure Virtual ATM system. Through this system we can make the fund transfers faster and also safe using PIN. The system is designed to eliminate the need for physical cards and enable users to complete transactions from the comfort of their homes. It also promotes digital banking and reduces dependency on physical banking infrastructure.

The system is built using Python in a smart and organized way. It uses different sections for things like logging in, making transactions, and handling UPI payments. It checks PINs and OTPs carefully to keep accounts secure. Every transaction is recorded so everything stays accurate and users can trust the system.

The system is just a basic version. It doesn't support a large number of users at once or connect with real bank networks. Fingerprint logins or advanced fraud detection aren't included either. But this project sets the stage for bigger, more powerful systems in the future.

To make everything safe, the system uses strong security methods like PIN and OTP checks. Since it's all online, users don't need physical ATM cards or machines. It's designed in a way that makes user input, checking, and transactions work smoothly. With these safety features, it helps avoid problems that happen with real ATMs—like damage or misuse.

3.LITERATURE SURVEY

S.	Title /	Yea	Contribution	Methodology	Findings / Conclusion
No	Author(s)	r	s		
1	Virtual ATM:	2020	Proposes a	Device-based	VATM offers secure,
	A Low Cost		virtual ATM	implementatio	affordable, and convenient
	Secured		(VATM)	n with OS-	banking with two-layer
	Alternative to		system for	independent	authentication
	Conventional		secure mobile	setup	
	Mobile		banking using		
	Banking		PIN and		
	Shabnam		CDMA		
	Shahreen		module		
	Sifat and Ali				
	Shihab Sabbir				
2	Cardless ATM	2021	Proposed a card	System design	Enhanced transaction security and
	Using 3-Level		less ATM	with biometric	speed; reduced ATM fraud and
	Authentication		model using	+ PIN + OTP	restricted unauthorized physical
	System		fingerprint,	layers	access to ATM booths.
	Velasiri		PIN, and OTP		
	Dwarakamayi		as a 3-level		
	Amareswari,		authentication		
	Gopi Manoj		method to		
	Vuyyuru		enhance		
			transaction		
			security		

3	Biometric	2021	Enhances	Biometric	Improved security through
	Based		ATM security	fingerprint	biometric validation; fingerprint
	Secured ATM		using	scanning +	recognition ensures authentic
	Transaction		fingerprint	GSM-based	access and reduces ATM card
	Incorporating		biometrics	OTP link	fraud risks. ATM time-span
	GSM		and GSM-	generation	tracking adds additional
			linked	generation	_
	Technology				security.
	A. Gokul Raj,		authentication		
	B. Tharik		to prevent		
	Salman, R.		PIN-based		
	Vasudevan,		fraud		
	Y				
		2021		150	
4	Combining	2021	suggests a	170 customers	improves important transaction
	PIN and		two-level	of online	security while taking user
	Biometric		identification	banking were	preferences into account.
	Identification		system that	surveyed;	
	s as		uses face	system design	
	Enhancement		recognition		
	to User		and		
	Authenticatio		PIN/fingerprin		
	n in Internet		t.		
	Banking				
	Cherinor				
	Umaru Bah et				
	al.				

5	UPI-Based	2022	Studied user	Survey of UPI	UPI is efficient but needs API-
	Transactions		behavior and	users,	level security enhancements.
	in India:		decision-	behavior	
	Adoption and		making in	analysis	
	Security		adopting UPI		
	Sharma et al.		apps.		
6	Adoption of	2023	Analyses the	State-level	Despite digital literacy and
	UPI and		growth of UPI	logit analysis	connectivity gaps, UPI is
	Implementatio		and the	of adoption	growing in rural areas.
	n of UPI-ATM		upcoming	patterns in	Continued infrastructure
	in India: A		UPI-ATM	India	development can boost
	Logit Analysis		services,		adoption of UPI-ATM and
	Dr. Tirthankar		especially in		financial inclusion nationwide
	Mandal		rural vs. urban		
			settings using		
			statistical		
			modelling		
7	Advanced	2023	Proposes a	Face detection	Combines biometric verification
'	High Secured	2023	secure ATM	using OpenCV	with traditional security layers;
	Smart ATM		system using	& Haar	improves security, eliminates
	System		face	Cascade, face	ATM card dependency, and
	Narmatha R,		recognition,	recognition	reduces fraud risk through facial
	Reshma J,		PIN, and OTP	with Local	verification.
	Jeevitha K,		instead of	Binary Pattern	
	Janani C		traditional card-		
			based access		

Volume 24, Issue 02, 2025

8	A Study on	2024	examines the	Examination	highlights the consequences for
	UPI		contribution	of internet	policy and the effect of UPI on
	Transactions		of UPI to	penetration	economic growth.
	in India		economic	and UPI usage	
	S. Vijay		growth and	patterns	
	Kumar,		financial		
	Nayeema		inclusion.		
	Unnisa				
9	The Growth	2024	examines the	Economic	UPI's contribution to digital
	of Digital		expansion of	indicator-	financial inclusion is
	Payments in		UPI and how	based	demonstrated.
	India: A Case		it affects	regression	
	Study of UPI		internet users	analysis.	
	Urja		in rural areas.		
	Samwani,				
	Kamini				
	Khanna				

10	The Sound of	2025	investigates	Analysis of a	demonstrates how sound boxes
	Progress: A		the use of	case study on	help to make digital payments
	Case Study		sound box and	the adoption	possible
	on Merchant		UPI by	of technology	
	Adoption of		merchants.	and merchant	
	UPI			behavior	
	Applications				
	and				
	Soundboxes				
	Shashank				
	Sharma,				
	Narender				
	Singh				
	Chauhan				

4.PROPOSED METHODOLOGY

Traditional banking systems, especially ATM-based transactions, depend on physical cards and machines, making them expensive, site-related and insecure for fraud. To solve these problems, we propose a virtual ATM system developed using Python that allows users to carry out safe and practical bank operations using PIN and OTP-based authentication.

Object-oriented design

The system follows an object -oriented programming (OOP) approach, where all the main components are modelled as a classes:

User/card class: Store card number, PIN and balance.

Transaction class: Handle operations such as deposits, withdrawals and UPI-based transfer.

This modular structure increases scalability, code reuse and system clarity.

Modular banking business

All user activities are used on well-defined tasks:

Check the remaining amount: The account shows the remaining account balance.

Deposit money: Funds are added to user account after validation.

Money withdraw: Ensures adequate balance before you retire.

Online Transaction:

Send Money: After OTP verification, the fund is transferred with UPI.

Get money: Balance can be added after OTP confirmation.

Online withdrawal: OTP authenticated online takes money through mode.

3. Security through certification

To increase system security, the two-level authentication is used:

PIN verification: Users get 3 chances to enter the correct PIN code. After 3 attempts Temporary card blocking for 24 hours results.

OTP verification: A randomly generated OTP is used to certify sensitive tasks such as money transfer and online returns, ensuring safe access.

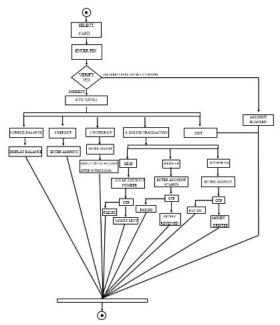
1. Exceptions and incorrectly handling

System uses the try-except block from Python-extension to:

- Handle invalid input (negative amount, non-selection entries).
- Prevent system crashes during unexpected user behaviour.
- Guide users with meaningful error messages without interrupting the session.

2. User interface and interaction

A single console -based interface guides through users:


- selection of card
- Menu -based navigation for available services.
- Early response to each action, the system was friendly for beginners

3. Administrator and user module

• Functions of Admin: can create, block or unblock cards, transactions can be monitored, and manage user information securely.

User work: Include all bank functions with security items and quick response.

5.SYSTEM DESIGN / ARCHITETURE

6.ALGORITHM

Step1: Start the program.

Step2: Display the message: Welcome to the Virtual ATM!

Step3: Show all cards offered (10 options).

Step4: Ask users to enter their card number (1-10).

Volume 24, Issue 02, 2025

Step5: If the input is valid, then continue; otherwise, exit the program.

Step6: Ask the user to input a PIN for the selected card.

Step7: Is the PIN correct, or is this the third attempt? If yes, then continue; otherwise, exit the program.

Step8: Display the ATM main menu:

- Check Balance
- Deposit
- Withdraw
- Online Transaction

Step9: Exit Take user input.

Step10: If choice=1, show current balance.

Step11: If choice=2:

- Ask for deposit amount.
- If amount>0, add to balance and show new balance.
- Else, invalid amount.

Step12: If choice=3:

- Ask for withdrawal amount.
- If amount>balance, error.
- If amount>0 and \(\leq \text{balance}, \) subtract from balance and show new balance.
- Otherwise, error.

Step13: If choice=4, display online transaction:

- Send Money
- Receive Money
- Withdraw Cash
- Ask user to pick one.

Step14: Send Money:

- Ask for recipient and amount.
- If amount>balance or amount ≤ 0 , show error.
- Otherwise, generate OTP.
- Prompt user to enter OTP.

If OTP correct, deduct amount and show new balance; otherwise, cancel.

Step15: Receive Money:

- Ask for amount.
- If amount ≤ 0 , show error.
- Otherwise, generate OTP.
- Prompt user to enter OTP.

If OTP correct, add amount to balance; otherwise, cancel.

Step16: Withdraw Cash (Online):

- Ask for amount.
- If amount>balance or amount ≤ 0 , show error.

- Otherwise, generate OTP.
- Ask user to enter OTP.
- If correct, deduct amount and show new balance; else, cancel.

Step17: Returning to the main menu in case of wrong transaction type.

Step18: If the user selects five, the program displays "Thank you for using the ATM. Goodbye!", message and then terminates.

Step19: Show an error message and repeat the menu if the user enters an incorrect menu choice.

Step20: The above two steps shall be repeated from 8 through 19 until the user chooses Exit. Then the program terminates.

7.MODULES

Admin Module

Creating User Card

In the ATM system the admins can create new Card linked with an account for the users. The user details like name, password, UPI ID, and starting balance are entered by the admin. The system checks that all the details are correct and safe to avoid mistakes.

Blocking Card

The system will automatically block the card if the user types the wrong PIN too many times to keep the account safe from unauthorized access. The user cannot make any transactions after 3 wrong tried as the account will be locked by the system.

Unblocking the Card

The admin or the system and help the user unlock the card if the account gets locked due to 3 false trails. It automatically gets unblocked after 24hrs.

Checking User Transactions

The transaction history of the user like money they have deposited, withdrawn, or sent using UPI can be viewed by the admins. By viewing thetransaction history helps keeping an eye on any misuse, solving problems, or spotting anything unusual. Every activity is recorded with the date and time.

User Module

Logging in with a PIN:

Users log in by entering their username and a secure PIN. If the PIN is right, they can access their account. If it's wrong, the system shows how many tries are left. After three wrong attempts, the account gets locked to keep it safe.

Depositing Money:

Users can add money to their virtual account. The system checks that the amount entered is correct (it can't be zero or negative). Once the deposit is successful, the balance updates and the deposit is saved in the user's transaction history.

Withdrawing Money:

Users can take money out of their account. Before the money is sent, the system checks that the amount is valid and that the user has enough balance. If there's not enough money, it shows an error. If everything is okay, the balance is updated, and the withdrawal is saved.

Sending Money with UPI:

Users can instantly send money to others using UPI. The system checks if the UPI ID is correct and whether there's enough balance. If so, the money is sent and the transaction is saved. It makes digital payments fast and easy.

Checking Balance:

Users can check their current account balance anytime. It's always up to date, showing the correct amount based on all deposits, withdrawals, and UPI transfers.

Viewing Transaction History:

This feature shows a list of all the user's past money activities—deposits, withdrawals, and UPI transfers. It helps users keep track of their money and manage their spending.

8.RESULT ANALYSIS

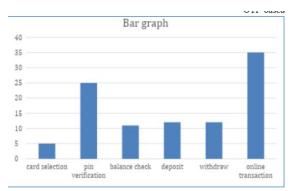


FIG 8: The bar graph illustrates the various functional modules implemented within the program **9.CONCLUSION**

The proposed virtual ATM system simulates successful core banking operations such as deposits, withdrawal, balance control and UPI-based transactions using a safe, short-term approach. System transactions are developed using Python, and integrates PIN approval and

OTP verification to ensure transactions protection and security.

Through the user-friendly console interface, the system shows real-time control without relying on a physical card or bank infrastructure. Large security measures, such as limited PIN efforts and OTP-based verification, increase the trust and reliability of the system. Exceptions prevent handling and input handling ensures a smooth user experience.

While the current version is a prototype with simulation of a user and no database or real bank network connection, it provides the basis for future promotion such as biometric authentication, access to multiple users, encrypted cloud storage and integration with real -time bank API.

Overall, the project achieves its goal of providing a cost -effective, safe and accessible banking system that promotes digital economic transactions and reduces the dependence on physical ATMs.

10.FUTURE ENHANCEMENT

In the future, this virtual ATM system can be improved by adding new features that work more like the actual ATM. A big idea is to connect it to real ATM using devices such as Raspberry Pie or Arduino. This will allow us to use real keyboards, card readers (RFID/NFC), small screens and even parts that can pay or retire using engines. By doing this, our project can become a functioning model of ATMs, which is useful for college projects or real -time demo.

we can improve how we protect the user data. Now the data is temporarily stored. In the future databases like MySQL or SQLITE can be used to save the user details, balance and previous transactions. the PIN can also be protected using secure coding methods such as SHA-256 and sent OTP via email or SMS. Using safe internet connections (TLS), all data sent or received will stay private. Adding a proper login system for each user will allow personalized experiences.

Other improvements include replacing the black-and-white screen with a colourful and easy-to-use interface using tools like Tkinter or PyQt. A web version can also be made so it runs in browsers. Users can get messages or receipts after each transaction. More than one user can use the system at once, and we can support different languages and features for people with disabilities. Finally, adding testing and error-tracking will help us find problems and fix them easily. With these changes, the Virtual ATM

11.REFERENCES

- [1]. Shabnam Shahreen Sifat and Ali Shihab Sabbir (2020). Virtual ATM: A Low Cost Secured Alternative to Conventional Mobile Banking. International Journal of Scientific and Research Publications, Vol.10, Issue 3, page no:100–105
- [2]. Velasiri Dwarakamayi Amareswari, Gopi Manoj Vuyyuru (2021). Cardless ATM Using 3-Level Authentication System. International Journal of Advanced Research in Computer and Communication Engineering, Vol. 10, Issue 2, page no: 25–29.
- [3]. A. Gokul Raj, B. Tharik Salman, R. Vasudevan, Y (2021) Biometric Based Secured ATM Transaction Incorporating GSM Technology, International Journal of Engineering Research & Technology (IJERT). Vol. 9, Issue 5, page no:34–38.
- [4]. Cherinor Umaru Bah1, Afzaal Hussain Seyal, Umar Yahya (2021) Combining PIN and Biometric Identifications as Enhancement to User Authentication in Internet Banking, ID 2105.09496.
- [5]. Animesh Sharma, Megha Agarwal, and Ponnurangam Kumaraguru (2022). UPI-Based Transactions in India: Adoption and Security. In Proceedings of the 18th Symposium on Usable Privacy and Security (SOUPS), page no: 62–65.
- [6]. Dr. Tirthankar Mandal (2023). Adoption of UPI and Implementation of UPI-ATM in India: A Logit Analysis, International Journal of Economics and Finance (IJEF), Vol. 3, Issue 1, page no: 45–52.
- [7]. Narmatha R, Reshma J, Jeevitha K, Janani C (2023). Advanced High Secured Smart ATM System, International Journal for Research in Applied Science and Engineering Technology (IJRASET), Vol. 11, Issue 4, page no: 88–92.

Volume 24, Issue 02, 2025

- [8]. S. Vijay Kumar, Nayeema Unnisa (2024). A Study on UPI Transactions in India, International Journal of Applied Business and Management Review (IJABMR), Vol. 2, Issue 1, page no: 15–20.
- [9]. Samwani, U. & Khanna, K. (2024), The Growth of Digital Payments in India: A Case Study of UPI, In Proceedings of the 2nd International Conference on Financial Technologies and Digital Economy, page no: 55–63.
- [10]. Shashank Sharma, Narender Singh Chauhan (2025). The Sound of Progress: A Case Study on Merchant Adoption of UPI Applications and Soundboxes, Journal of Payments Strategy & Systems, Vol. 19, Issue 2, page no: 112–118.